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Identification of a Hammerstein Model of the
Stretch Reflex EMG using Cubic Splines

Erika J. Dempsey and David T. Westwick
Dept. Elec. & Comp. Eng., Univ. Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada

Abstract— The use of cubic splines, instead of polynomials, in repre-
senting static nonlinearities in block structured models is considered. A
system identification algorithm for the Hammerstein structure, a static
nonlinearity followed by a linear filter, is developed in which the static
nonlinearity is represented by a cubic spline. The identification algorithm,
based on a separable least squares Levenberg-Marquardt optimization, is
used to identify a Hammerstein model of the stretch reflex EMG record-
ed from a spinal cord injured patient. The resulting model provides more
accurate predictions of the reflex EMG, even in novel data, than more con-
ventional models which use polynomial representations of the nonlineari-
ty. Furthermore, the spline based optimization appears to be less sensitive
to its initialization than a similar polynomial-based approach.

Keywords— nonlinear system identification, physiological model-
ing, separable least squares, mean squared optimization, Levenberg-
Marquardt iteration

I. INTRODUCTION

The Hammerstein cascade [10], a static nonlinearity fol-
lowed by a linear filter, is often used to represent certain highly
nonlinear systems. It is particularly useful for modeling sys-
tems, such as the stretch reflex, which contain “hard” nonlin-
earities, e.g. rectification and/or thresholding. Indeed, Ham-
merstein cascades can model some nonlinear systems, specifi-
cally those whose underlying structure is appropriate, using far
fewer parameters than an equally accurate Volterra or Weiner
series model.

Block structured models often use polynomials as static
nonlinearities. Polynomials are linear in their parameters, and
hence easy to estimate. Furthermore, fairly extreme nonlinear-
ities can be represented using relatively few parameters. Final-
ly, there is a direct mathematical relationship between the poly-
nomial coefficients and corresponding Volterra kernels [10].

Several problems, however, have been identified with poly-
nomial estimation, especially in regions where data is sparse
[3]. Small disturbances in the data can produce significant
differences in the interpolated values. High order polynomial
solutions can also produce undesirable fluctuations, as evident
in the polynomial shown in the upper panel of Fig. 3. Finally,
polynomial extrapolation is notoriously difficult.

For these reasons, splines are often used instead of poly-
nomials for function approximation [3]. Indeed, several re-
searchers have suggested, but not demonstrated, the use of
splines in nonlinear system identification [1], [2]. Unlike poly-
nomials, fitting splines requires a nonlinear optimization. This
added difficulty is most likely the reason for their limited appli-
cation to date. Interest, however, appears to be growing in neu-
ral networks applications, where the replacement of sigmoidal
nonlinearities with adaptive splines is being considered [4].

In this paper, we will develop an identification algorithm for
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Fig. 1. Block diagram of a Hammerstein structure, consisting of a static non-
linearity, followed by a dynamic linear system.

Hammerstein systems in which the nonlinearity is represent-
ed by a cubic spline. The resulting technique will be used to
identify models of the stretch reflex EMG from experimental
data. Finally, identified models incorporating both polynomial
and cubic spline nonlinearities will be compared.

II. THEORY

The Hammerstein model, shown in Fig. 1, consists of a static
nonlinearity followed by a dynamic linear system. Here, u(t)
and y(t) are its input and output, and x(t) is the signal between
the nonlinear and linear elements.

The linear filter will be represented by its impulse response
(IRF), h(τ), which will have a memory length of T samples.
Its output is computed using the convolution sum,

y(t) =
T−1∑
τ=0

h(τ)x(t − τ) (1)

The static nonlinearity, m(·), maps the input, u(t), to the
intermediate signal, x(t). Traditionally, it is modeled with an
order Q polynomial, in which case,

x(t) = m(u(t)) =
Q∑

q=0

cqu
q(t) (2)

where cq is the q’th order polynomial coefficient. Regardless
of how the nonlinearity is represented, the output of a Ham-
merstein cascade can be written as,

y(t) =
T−1∑
τ=0

h(τ)m(u(t − τ)) (3)

In the special case of a polynomial Hammerstein model, where
m(·) is parameterized with a polynomial, (3) becomes,

y(t) =
T−1∑
τ=0

Q∑
q=0

cqh(τ)uq(t − τ) (4)
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Techniques based on separable least squares (SLS) opti-
mizations [9] have been developed for the identification of
polynomial Hammerstein models [11]. Briefly, the Hammer-
stein cascade is represented by a parameter vector containing
the filter weights and polynomial coefficients,

θ =
[

h(0) . . . h(T − 1) c0 . . . cQ

]T
(5)

=
[

θT
l θT

n

]T

Its output is written ŷ(t, θ), explicitly showing the dependence
on the parameter vector. Thus, ŷ(t, θ) is computed using (4),
where the IRF and polynomial coefficients are taken from θ,
defined in (5). Furthermore, identifying the model is equiva-
lent to finding the parameter vector that minimizes the MSE,

VN (θ) =
1
N

N∑
t=1

(y(t) − ŷ(t, θ))2

The SLS identification algorithm [11] hinges on the obser-
vation that for any given choice of polynomial coefficients, the
output (4) is a linear function of the filter weights. This is
reflected in (5), where θ is divided into linear and nonlinear
parameters, θl and θn respectively. Since (4) is linear in θl, its
optimal value, corresponding to any choice of polynomial co-
efficients, θn, can be found in closed form by solving a linear
regression. Thus, θl is a function of θn, written θl(θn). Sim-
ilarly ŷ(θn), and VN (θn) are also functions of the nonlinear
parameters alone. Thus, an iterative, nonlinear, optimization is
only needed to find θn. In this paper, we use the Levenberg-
Marquardt algorithm. Thus, θn is updated using:

θ(k+1)
n = θ(k)

n +
(
JT

s Js + δkI
)−1

JT
s ε (6)

where ε is a vector whose t’th element is the error ε(t) =
y(t) − ŷ(t), I is an identity matrix, and δk is a regularization
parameter used to control the convergence rate and stability.
Js, the Jacobian, is matrix whose [t, m] entry contains the par-
tial derivative of the model output at time t with respect to the
m’th element of θn. Thus,

Js(t, m) =
∂ŷ(t)

∂θn(m)
(7)

Note, however, that in computing Js, the dependence of θl, the
linear parameters, on θn must be taken into consideration. This
can be done as follows. First compute Jl and Jn, the Jacobians
with respect to the linear and nonlinear parameters, assuming
that the parameters are independent of each other. Then, it can
be shown [9] that

Js = (I − Pl)Jn (8)

where Pl = Jl(JT
l Jl)−1JT

l is an orthogonal projection onto
the columns of the linear Jacobian, Jl.

Thus, to use the SLS algorithm, compute the Jacobian in the
usual way, and then separate it into linear and nonlinear parts.
Insert these into (8) to compute Js, used in the L-M step (6).

A. Use of Cubic Splines

The SLS algorithm depends on the output, (4), being a linear
function of the IRF weights, but does not depend on the rep-
resentation of the static nonlinearity, m(·). All that is needed
to use a different nonlinearity, (3), is to compute the nonlinear
Jacobian, Jn, with respect to its parameters.

In this paper, the static nonlinearity, x = m(u), will be
modeled by a cubic spline instead of a polynomial. A cu-
bic spline is defined by a series of M knots, (uj , xj), for
j = 1, 2, . . . , M , with u1 < u2 < . . . < uM . Thus, the
parameter vector describing the spline can be formed,

θn =
[

u1 . . . uM x1 . . . xM

]T
(9)

In between each pair of knots, the spline is defined by a third
degree polynomial. These are chosen so that the spline and
its first two derivatives are all continuous functions. Hence,
let u be a point in the input, between knots j and j + 1, (i.e.
uj ≤ u ≤ uj+1). The corresponding point in the output of the
spline is computed from [8],

x = A(u)xj + B(u)xj+1 + C(u)x′′
j + D(u)x′′

j+1 (10)

where A(u), B(u), C(u) and D(u) are defined by

A(u) =
uj+1 − u

uj+1 − uj

B(u) = 1 − A(u)

C(u) =
1
6
(A3(u) − A(u))(uj+1 − uj)2

D(u) =
1
6
(B3(u) − B(u))(uj+1 − uj)2

Note, however, that (10) depends on the second derivative of
the the spline, x′′ = ∂2x/∂u2, at the two adjacent knots. At
first glance, it would appear that these second derivatives are
required to define the spline completely. However, by forcing
the first derivative of the spline to be continuous across the
knots, one arrives at the equation [8],

uj−uj−1
6 x′′

j−1 + uj+1−uj−1
3 x′′

j + uj+1−uj

6 x′′
j+1

= xj+1−xj

uj+1−uj
− xj−xj−1

uj−uj−1

(11)

for j = 2, . . . , M − 1. Thus, we have M − 2 equations
with which to define x′′ at M locations, which is an under-
determined problem. Typically, this is resolved by arbitrari-
ly choosing the second derivatives at the two end points. In
this paper, natural splines will be employed, where the second
derivative is set to zero at the first and last knots. Thus (11) can
be used to solve for x′′ at the remaining M − 2 knots. Once
these have been computed, (10) can be used to compute the
output of the cubic spline.

To use a cubic spline, instead of a polynomial, in the SLS
Hammerstein identification algorithm, one need only compute
the appropriate nonlinear Jacobian,

Jn =
[

∂x(t)
∂u1

, . . . , ∂x(t)
∂uM

, ∂x(t)
∂x1

, . . . , ∂x(t)
∂xM

]
(12)

and then insert it into (8) to compute the separated Jacobian in
the Levenberg-Marquardt step (6). The rest of the algorithm is
used without modification.
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Fig. 2. Extract from a typical experimental trial showing 4 seconds of position,
velocity and GS EMG.

III. EXPERIMENTAL RESULTS

To evaluate the utility of the cubic spline algorithm, we used
it to estimate stretch reflex dynamics, the relationship between
the ankle velocity and the resulting EMG, in spastic, spinal
cord injured (SCI) patients. Previously, this system has been
modeled as a Hammerstein cascade [5] in which the static non-
linear element was found to resemble a half-wave rectifier and
the IRF of the linear element resembled a delayed impulse.
Since this model is being investigated for potential clinical use
[7], methods that find efficient, unbiased estimates of its ele-
ments may prove to be very significant.

The experimental procedures have been described in detail
elsewhere [6]. In summary, the subjects, due to a previous
spinal cord injury, demonstrated an incomplete loss of motor
function, spasticity and hyper-active stretch reflexes. They lay
on their backs with their left foot attached to a rotary hydraulic
actuator by a custom fitted fiber-glass boot. Ankle torque and
position, and the EMG over the Gastrocnemius-Soleus(GS)
muscles were recorded. A broad-band position perturbation,
whose spectrum was shaped to preserve the stretch reflex [6],
was applied while the subject maintained a constant back-
ground contraction. Figure 2 shows four of the 30 seconds,
sampled at 200 Hz, of position, velocity and EMG data used in
the analysis. Note that the velocity was calculated by numeri-
cally differentiating the measured position.

The technique developed in [11] was used to fit a polyno-
mial Hammerstein model between the first 5000 points of the
velocity and EMG records, hereafter called the training data.
The starting point for this SLS optimization was the nonlinear-
ity identified using a conventional correlation based scheme
[5]. The resulting model, shown in Fig. 3 with dash-dotted
lines, was then used to predict the remaining 1000 points of
EMG data, the validation segment. The polynomial Hammer-
stein model accounted for 95.2% of the signal variance in the
training sample and 94.5% in the validation set.

Next, a cubic spline Hammerstein cascade was identified
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Fig. 3. Hammerstein models of the stretch reflex EMG using polynomial and
cubic spline nonlinearities identified from experimental data.

from the training data. The initial spline had 5 knots along
the line m(u) = u, equally spaced over the range of the exper-
imental input. The SLS iteration described in this paper was
then used to search for the optimal cubic spline nonlinearity
and corresponding linear IRF. The results of this identification,
referred to as “spline one”, are shown as solid lines in Fig. 3.
The nonlinearity is shown in the upper panel: the knots are
shown as circles, with the behavior between knots shown as a
solid line. The prediction accuracy of this model was 95.3%
VAF in the training data, and 95.6% VAF in the validation sam-
ple. Therefore, using the cubic spline algorithm decreased the
residual variance by 2.1% and 25.0% in the training and vali-
dation sets, respectively.

If a general model of the system has been previously devel-
oped, points for the initial spline can be taken from its nonlin-
earity. For example, a cubic spline model, referred to as “spline
two”, was generated from the same initial model as the poly-
nomial cascade. The results are shown in Fig. 3 as dashed lines
with the spline knots represented by asterisks. Spline two ac-
counted for 95.5% of the variance in the training set and 96.0%
in the validation set, giving a decrease of 6.7% and 37.5% of
the residual variance in the two data segments with respect to
the polynomial-based cascade.

Comparing the models produced by the two algorithms il-
lustrates several potential advantages of the spline-based ap-
proach. First, its models produced more accurate predictions
than did the polynomial-based scheme. Secondly, the “spline
one” model resulted from an initialization, a simple linear fit,
that contained no a priori information about the shape of the
nonlinearity, suggesting that the spline-based algorithm may
be less sensitive to its initialization than the polynomial ap-
proach. Furthermore, neither spline-based model included the
oscillations at negative velocities present in the polynomial
curve (see Fig. 3 upper panel). Finally, the dynamic linear
subsystem (lower panel) of the “spline two” model shows a
steeper response with a longer rest time at zero, which is more
consistent with the propagation delay expected in the reflex.
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Fig. 4. Upper panel: input-output scatter plot of spline two. Lower panel:
probability density histogram of input velocity.

In both the polynomial and spline nonlinearities, there is a
large negative deflection between input velocities of 0.6 and
1.1 rad/sec. However, this deflection appears to be well sup-
ported by the experimental data. Indeed, the upper panel of
Fig. 4 shows a scatter plot of the input and output of the non-
linearity from spline two. Since much of the deflection ap-
pears as a series of solid lines, it is evidently well supported by
the training data. The lower panel shows a probability density
histogram, also estimated from the training data, for the non-
linearity input. This suggests that, except near zero velocity,
all points in the input are probed with almost equal frequen-
cy. Since the parameters describing a cubic spline (i.e. the
knot positions) have primarily local effects on its shape, it is
unlikely that the deflection is an artifact due to the analysis.

IV. DISCUSSION

In this paper, we have developed a cubic spline identifica-
tion method for Hammerstein systems and used it to identify
models of the stretch reflex EMG in SCI patients. Both spline-
based models developed more accurate predictions than a poly-
nomial based cascade identified from the same data. This ap-
plied to both the training and validation samples.

Iterative optimizations, such as the cubic-spline based tech-
nique developed in this study, are prone to finding sub-optimal
local minima. For example, the results obtained by the poly-
nomial method [11] are dependent on the choice of initial
polynomial coefficients. In this study, see Fig.3, changing
the initial spline knots produced slight variations in the final
Hammerstein cascade. During the data analysis, several other
initial splines were tested (results not shown). Starting with
m(u) = k, a constant, led to a model in which the nonlinearity
was offset and the IRF was highly oscillatory. This model was
less accurate than even the polynomial cascade. On the other
hand, when the initial knots were taken from m(u) = u2 or
m(u) = u3, the optimization found models similar to splines
one and two. Overall, the cubic spline method appeared to be

less dependent on its initial parameters than the polynomial-
based algorithm. Future research will analyze the convergence
behavior of the cubic spline Hammerstein algorithm.

The price of the cubic spline-based algorithm is an increased
number of parameters needed to characterize the nonlinearity.
A cubic spline Hammerstein cascade is still much more effi-
cient than an equivalent Volterra series model, but uses more
parameters than a polynomial Hammerstein model. In this
study, a cubic spline with five knots, which has ten param-
eters, was compared to a sixth order polynomial, with seven
coefficients. With the cubic spline initializations, including ad-
ditional knots provided only a small increase in accuracy, but
beginning with fewer than five resulted in significantly inferior
models. Similarly, increasing the nonlinearity order had little
effect on the accuracy of polynomial-based models. Finally,
increasing the memory length of the IRFs led to slightly small-
er residuals for both the cubic spline and the polynomial-based
cascades.

These results suggest that cubic splines may be used in place
of polynomials in a wide variety of block-structured models
currently used to represent physiological systems. It appears
that iterative identification algorithms based on splines may
be less dependent on their initialization than similar poly-
nomial-based schemes. Furthermore, models based on splines
are likely to be relatively immune to the severe interpola-
tion/extrapolation problems associated with polynomials.
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